

Low-Temperature CO₂ Hydrogenation to Liquid Products via a Heterogeneous Cascade Catalytic System

Yuan Chen, Saemin Choi, and Levi T. Thompson*

Department of Chemical Engineering and Hydrogen Energy Technology Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2136, United States

ABSTRACT: Research described in this paper targeted a cascade system for the hydrogenation of CO₂ to methanol via formic acid and/or formate intermediates, a reaction sequence that has been accomplished previously using homogeneous catalysts. On the basis of results for the hydrogenation of CO₂, formic acid, and ethyl formate over a series of Cu- and Mo₂C-based catalysts, we selected a Cu chromite catalyst for CO₂ hydrogenation to the formate and a Cu/ Mo_2C catalyst to convert the formate to methanol. These catalysts

worked cooperatively in the presence of ethanol, yielding a methanol turnover frequency of $4.7 \times 10^{-4} \text{ s}^{-1}$ at 135 °C, 10 bar of CO₂, and 30 bar of H₂ in 1,4-dioxane. The performance for this Cu chromite:Cu/Mo₂C cascade system surpassed the additive production of the individual catalysts by ~60%. The results also allowed an investigation of the reaction pathways. The hydrogenation of CO₂ to formic acid appeared to be the rate-limiting step for most of the catalysts. This is not surprising given the thermodynamics for this reaction. Finally, the hydrogenation of CO₂ to dimethyl ether was also demonstrated using a system consisting of the Cu/Mo₂C catalyst to produce methanol from CO₂ and HZSM-5 to produce dimethyl ether from methanol. The systems described in this paper are, to our knowledge, the first demonstrating cascade CO₂ hydrogenation via heterogeneous catalysts.

KEYWORDS: CO_2 hydrogenation, low temperature, methanol synthesis, cascade catalysis, heterogeneous catalysis, Mo_2C -based catalysts, Cu-based catalysts, reaction pathways

INTRODUCTION

The production of chemicals and fuels consumes more than 4 Gton of carbon per year, most of which comes from fossil resources.¹ With growing evidence linking anthropogenic CO₂ emissions to global climate change, there has been an increased interest in finding nonfossil carbon sources.² Advances in carbon capture could facilitate the use of CO₂ as a source of carbon. CO₂ is abundant and its hydrogenation, using hydrogen from renewable sources (e.g., H₂O), could result in a sustainable route for the production of chemicals and fuels.³ Of course, processes are being developed to convert biomass into chemicals and fuels; however, their impact could be limited by the slow biological rates for biomass production from CO_{24} significant land use requirements, and other environmental challenges.⁴ Nonbiological processes convert nearly 100 Mton of CO₂ into products including urea and polycarbonate plastics; nevertheless, the large-scale production of commodity chemicals or fuels from CO2 has been limited due to the lack of sufficiently active and selective catalysts.^{3a} A desirable first product from CO₂ is methanol, an essential precursor to a variety of useful products such as olefins (via the methanol to olefins process^{3b}), gasoline (via the methanol to gasoline process⁵), biodiesel,⁶ and a fuel or fuel additive. The hydrogenation of CO2 to methanol not only recycles CO2 but also stores the chemical energy from H₂ with greater portability and potential to utilize established infrastructures."

Conventional processes for CO₂ hydrogenation involve gas phase catalytic conversion over Cu–Zn based catalysts at high operating temperatures (230–270 °C), where methanol production is unfavorable due to the exothermicity of the reaction ($\Delta H_{298 \text{ K}} = -49.5 \text{ kJ/mol}$).⁸ There have been significant efforts to improve catalyst performance; however, progress has been limited.^{8b–d,9} Furthermore, CO₂ reduction to methanol is a multiple electron (6e⁻) transformation, and the use of a single catalyst to achieve good performance could be challenging.¹⁰

Lower temperature thermochemical and electro-/photoelectrochemical methods have also been investigated for the conversion of CO₂ to methanol. Fan et al. employed Cu-based catalysts to hydrogenate CO₂ to methanol through formic acid and ethyl formate intermediates in liquid ethanol at 150–220 °C.¹¹ The Cu–Zn-based catalyst was most active and, at temperatures near 200 °C, yielded the maximum methanol selectivities. Yu et al. recently reported the use of a Cu–Zn–Al catalyst for the production of methyl formate from CO₂ in liquid methanol at 150–190 °C.¹² They proposed that the pathway involved the reaction of a surface formate with methanol to produce methyl formate; however, the conversion of methyl formate to methanol was not reported as the

Received: October 27, 2014 Revised: December 24, 2014 Published: February 2, 2015

methanol being produced could not be distinguished from the methanol reaction media. A number of electro-/photoelectrochemical materials, including Cu- and carbon nanotube-based catalysts, have been developed for CO₂ hydrogenation.¹³ Achieving high selectivities to methanol and high Faradaic efficiencies has proven to be a challenge as reduction potentials for methanol, formic acid, formaldehyde, and H₂ are similar.¹⁴ Semiconductor materials, such as p-type gallium arsenide and p-type indium phosphide, have shown promising selectivities to methanol, however, at the expense of high overpotentials.¹⁵

Recently a cascade system involving homogeneous catalysts was demonstrated for the thermocatalytic conversion of CO₂ to methanol at low temperatures.^{10,16} Cascade catalytic systems typically involve the use of multiple catalysts for sequential transformations within one pot or a single synthetic operation.¹⁷ The individual catalysts are selected for specific reactions, and the increased degrees of freedom (i.e., using multiple catalysts) enhance the opportunities to optimize overall performance.^{17,18} Huff and Sanford reported the use of a series of homogeneous catalysts for the cascade conversion of CO₂ to methanol at 135 °C through formic acid and formate ester intermediates (Figure 1).¹⁰ Methanol turnover numbers

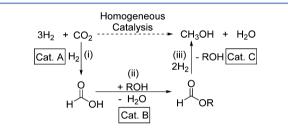


Figure 1. Cascade reaction pathway for CO_2 hydrogenation to CH_3OH via formic acid and formate ester intermediates. Adapted from ref 10.

as high as 2.5 were reported for a one-pot 16 h reaction. A challenge for this system was incompatibility among some of the homogeneous catalysts as well as with the CO_2 reactant. Whereas the mechanisms that contribute to the incompatibility are being investigated,¹⁹ suitable catalysts have not been reported. Heterogeneous catalysts could achieve greater compatibility and easier separation from the reactant/product mixture;²⁰ however, the use of heterogeneous catalysts for this type of cascade reaction has not been reported.

The primary objective of research described in this paper was to explore the feasibility of a low-temperature cascade system for the hydrogenation of CO2 to methanol based on heterogeneous catalysts. Inspired by results reported by Fan et al.¹¹ and Huff and Sanford,¹⁰ we targeted a system involving CO₂ hydrogenation through formic acid and/or formate ester intermediates. To design this system, we evaluated rates and selectivities for the hydrogenation of CO₂, formic acid, and ethyl formate over several Cu- and Mo₂C-based heterogeneous catalysts. Copper-based catalysts have been reported to be active for CO_2 hydrogenation to methanol^{8b,9b} and are widely used for methanol synthesis from syngas, a mixture of CO and H₂ that often contains small amounts of CO₂.²¹ Dubois et al.²² and Xu et al.²³ reported that Mo carbides are active for the gas phase hydrogenation of CO₂ at 200–300 °C, producing mostly CH_4 and CO (~70%) and smaller amounts of methanol (~20%) and other hydrocarbons (up to C_3). Molybdenum carbide-based catalysts are also active for CO hydrogenation,²⁴

water–gas shift,²⁵ and hydrodeoxygenation²⁶ reactions. On the basis of the measured activities and selectivities over the Cuand Mo₂C-based catalysts, we devised a cascade system and evaluated its performance for the hydrogenation of CO₂ to methanol. To the best of our knowledge, this is the first demonstration of an all-heterogeneous cascade system for this reaction. The results also enabled a prediction of the reaction pathways and key intermediates during CO₂ hydrogenation over the Cu- and Mo₂C-based heterogeneous catalysts.

MATERIALS AND METHODS

Catalyst Preparation. Several commercially available Cubased catalysts were acquired and used after pretreatment that is described later. These catalysts included Cu/ZnO/Al2O3 (Süd-Chemie/Clariant), Cu/Cr₂CuO₄ (Cu Chromite, Strem Chemicals Inc.), and nano-Cu (QuantumSphere). The Cu/ ZnO/Al₂O₃ and Cu/Cr₂CuO₄ catalysts will be referred to as the Cu-Zn-Al and Cu-Cr catalysts throughout this paper. The nano-Cu catalyst was included to explore the importance of a support material. The high surface area Mo₂C was synthesized using a temperature-programmed reaction (TPR) technique. Prior to the synthesis, ~1.3 g of ammonium molybdate (AM) precursor, (NH₄)₆MO₇O₂₄·4H₂O (Alfa Aesar), was sieved to 125–250 μ m and then loaded into a quartz tube reactor. The AM was first reduced in H₂ flowing at 400 mL/min, as the temperature was increased from 25 to 350 °C in 70 min. Subsequently, the material was held at 350 °C for 12 h. The reaction gas was then switched to 15% CH_4/H_2 flowing at 400 mL/min; the temperature was increased to 590 °C in 1.5 h and maintained at 590 °C for 2 h before quenching to room temperature. The Cu/Mo₂C catalyst was prepared using a wet impregnation method; the protocol for synthesizing this and other carbide-supported metals has been described in detail elsewhere.²⁷ Briefly, the freshly synthesized Mo₂C was transferred under 15% CH_4/H_2 gas into a beaker containing 70 mL of deaerated water (to avoid the oxidation of Mo₂C) with 4.4 mg/L of $Cu(NO_3)_2$ and allowed to interact for 20 h. This method enabled the metal precursor to directly interact with the native Mo_2C surface (as opposed to a passivated material). The resulting catalyst slurry was dried and reduced in situ in the reactor to decompose the nitrate and produce dispersed Cu domains.

Catalyst Characterization. Surface areas of the materials were measured using a Micromeritics ASAP 2010 analyzer based on N₂ physisorption. All of the catalysts were degassed (<5 mmHg) at elevated temperatures (Cu-based catalysts at 200 °C and Mo₂C-based catalysts at 350 °C) for 4 h prior to the surface area measurements. The bulk crystalline structures were characterized using X-ray diffraction (Rigaku Miniflex 600, Cu K α radiation) with 2θ ranging from 10° to 90° and a scan rate of 5°/min. Crystallite sizes were estimated via line broadening analysis using the Scherrer equation.²⁸ Metal compositions for the Cu/Mo₂C catalyst were determined by inductively coupled plasma (ICP-OES) using a Varian 710-ES analyzer. Solutions for the ICP measurements were prepared by dissolving 15 mg of catalyst in 1.5 mL of aqua regia, consisting of 1.125 mL of HCl (Fisher Scientific) and 0.375 mL of HNO₃ (70%, Fisher Scientific). The solution was sonicated for 10 min and left for 10 h to allow complete dissolution. The resulting solution was diluted by a factor of 14 using ultrapure water (18 $M\Omega \cdot cm$, Millipore Hilli-Q Advantage A10) to achieve concentrations appropriate for the ICP analysis.

The surface site densities for Mo₂C-based catalysts were determined via CO chemisorption. Prior to the measurements, the Mo₂C and Cu/Mo₂C catalysts were pretreated in 15% CH_4/H_2 for 4 h at 590 °C and then degassed in He at 600 °C for 1 h. The catalysts were cooled to 25 °C and repeatedly dosed with 5% CO/He (5 mL loop) until reaching saturation. To quantify the surface site densities for the other Cucontaining catalysts, a N₂O decomposition technique was used. The Cu-Zn-Al and Cu-Cr catalysts were reduced in 10% H_2/Ar at 200 °C for 4 h and then degassed in He for 1 h. The catalysts were then cooled to 60 °C and exposed to a flowing mixture of 10% N₂O/He for 2 h. Followed by the N₂O treatment, the sample was purged with He and cooled to 25 °C. A H₂ temperature-programmed reduction (TPR) was then performed by increasing the temperature from 25 to 400 °C in 10% H₂/Ar at 5 °C/min. The surface site density was determined by quantifying the H₂ consumed during TPR.²⁹ It should be mentioned that these chemisorbates (N₂O and CO) cannot be used to independently determine the sites for Cu and Mo₂C over the Cu/Mo₂C surface, because N₂O and CO adsorb to both Cu and Mo2C. Therefore, the use of CO chemisorption will overestimate the site density and underestimate the turnover frequencies over Cu/Mo₂C. Nevertheless, as Mo₂C accounts for 94.2 wt % (based on ICP analysis) for this catalyst, CO chemisorption still provides a reasonable estimate of the site density.

Reaction Rate and Selectivity Measurements. All of the reactions were performed in a 50 mL Parr Instruments reactor (Micro 5500). The reactor system was equipped with a programmable temperature controller and a magnetic drive for the impeller. The gas phase reactor effluent was analyzed using gas chromatography (Varian 450 with flame ionization and thermal conductivity detectors). Liquid samples (0.4 mL) were periodically withdrawn during the reaction using a dip tube, which was equipped with a 20 μ m filter to separate the liquid from the solid catalyst particles. These liquid samples were analyzed offline using gas chromatography (Varian 450 with flame ionization detector). As gas chromatography showed low responses for formic acid, NMR (d_6 -DMSO solvent, dimethylformamide internal standard) was used to quantify the formic acid intermediate in selected liquid samples. In addition to the hydrogenation of CO_{2} , we determined the rates and selectivities for hydrogenation of potential intermediates including formic acid and formate ester.

Prior to the reactions, the commercial Cu-based catalysts were reduced in the reactor vessel at 200 °C for 4 h under a flowing mixture of 4% H_2/N_2 (50 mL/min). Due to the pyrophoricity of Mo₂C catalysts, the materials were first treated with deaerated water to form a slurry to avoid bulk oxidation of the materials. The slurry was then quickly transferred to the reactor vessel, where it was dried in H_2 (50 mL/min) at 110 °C for 2 h. The dried catalyst was then heated to 300 °C at a rate of 4.2 °C/min and reduced at 300 °C under H_2 flowing at 100 mL/min for 4 h. The amount of catalyst loaded into the reactors was 200 mg unless otherwise noted.

Solvents for the reactions contained 37.5 mL of 1,4-dioxane (anhydrous, Acro Organics) and 10 μ L of *n*-decane (Acro Organics) as an internal standard. In this study, 1,4-dioxane was selected as the solvent given its solubility for methanol, relatively high boiling point (101 °C), and stability/inertness during the reaction. Other solvents including toluene and tetrahydrofuran (THF) were considered but were not utilized due to their low solubility for methanol (0.1 g methanol/100 g

Toluene) and poor separation for GC analysis, respectively. Although ethanol was used as the solvent by Fan et al.,¹¹ a major limitation was that ethanol altered the reaction pathway, making it difficult to distinguish the methanol produced from CO_2 or via formate intermediate. Note that we carried out a series of experiments to investigate the facilitating effect of ethanol on reaction pathways by adding a small amount of ethanol to the 1,4-dioxane solvent as described later.

For the CO₂ hydrogenation experiments, the reactors were charged with 10 bar of CO₂ and 30 bar of H₂ through a dip tube after purging the solvents with H₂ for 15 min to remove dissolved oxygen. As we are also interested in combining heterogeneous and homogeneous catalysts to generate a cascade system for CO₂ hydrogenation, the reactions were carried out at 135 °C, a temperature at which the homogeneous catalysts reported by Huff et al. are active.¹⁰ Under these conditions, the solubilities for CO₂ and H₂ are approximately 1.5 and 0.14 mol/L, respectively, based on information in the literature.³⁰ For selected reactions, 2 mL of ethanol was added to 35.5 mL of 1,4-dioxane. For the formic acid and ethyl formate hydrogenation experiments, 3 mmol of formic acid (98%, Alfa Aesar) or 0.6 mmol of ethyl formate (99.9%, Acro Organics) were added to the solvent, respectively. The reactant mixture was purged with 99.9% H₂ (for 15 min) to remove any oxygen and was then charged with 30 bar of H₂. The reactor was heated at a rate of 5 °C/min from room temperature to 135 °C and then agitated at a constant rate of 300 rpm, which indicated the start of the reaction. The reactor was maintained at 135 °C through the reaction. Reaction rates for CO₂, formic acid, and ethyl formate hydrogenation were calculated on the basis of formation rates for the products (on a C₁ basis) or consumption rates for the reactants. Carbon balances closed to within $\pm 8\%$ for all of the experiments. The turnover frequencies (TOF) were determined by normalizing the rates by the surface site densities. The selectivity is defined as the molar ratio of a specific product over the total products.

RESULTS

Surface and Physical Properties. The surface areas, surface site densities, Cu contents, and Cu crystallite sizes for the catalysts are listed in Table 1. The Mo_2C and Cu/Mo_2C

Table 1. Surface and Physical Properties for the Cu- and Mo₂C-Based Catalysts

catalyst	surface area (m²/g)	surface site density (µmol/g)	Cu content (wt %) a	average Cu crystallite size (nm)
nano-Cu	5.5		100	254
Cu–Zu–Al	60	192 ^b	33	89
Cu-Cr	46	184	36	163
Mo ₂ C	151	406	0	NA
Cu/Mo_2C	135	298	5.8	34

^{*a*}Cu contents for the Cu–Zn–Al, Cu–Cr, and nano-Cu catalysts were obtained from vendor specifications. ^{*b*}From ref 29.

catalysts had surface areas in excess of 100 m²/g, the commercial Cu–Zn–Al and Cu–Cr catalysts possessed moderate surface areas, and the nano-Cu material had a relatively low surface area, as expected. The decreased surface area for the Cu/Mo₂C catalyst (135 m²/g) compared to the Mo₂C catalyst (150 m²/g) was likely due to partial blocking of pores in the Mo₂C by Cu nanoparticles. Nevertheless, the

surface area for the Cu/Mo₂C catalyst was comparable to those reported for other Mo₂C-supported metals synthesized using similar conditions (e.g., Pt/Mo₂C with 133 m²/g^{25b}). The 5.8 wt % Cu loading was equivalent to ~40% of a monolayer on the Mo₂C support assuming atomic dispersion and 10¹⁹ atoms/ m².²⁷ The surface site densities for all of the materials were in the range of $(1.3-2.4) \times 10^{18}$ sites/m² or 13–24% surface coverage assuming 10¹⁹ total sites/m².

Diffraction patterns for the catalysts are illustrated in Figure 2. The pattern for the Cu–Zn–Al catalyst clearly indicated the

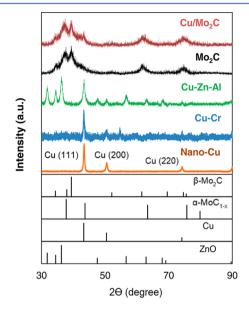


Figure 2. X-ray diffraction patterns for the Cu- and Mo₂C-based catalysts: β -Mo₂C (JCPDF 00035-0787), α -MoC_{1-x} (JCPDF 00-015-0457), Cu (JCPDF 01-085-1326), and ZnO (JCPDF 01-080-3004).

presence of Cu and ZnO crystallites, whereas the Al₂O₃ phase was amorphous by X-ray diffraction. The XRD pattern for the Cu–Cr catalyst contained peaks for Cu; there was also a peak at 54° 2 θ that is consistent with the presence of CuO within the Cu–Cr (Cu/Cr₂CuO₄) catalyst. The pattern for the nano-Cu material showed intense Cu peaks and confirmed its phase purity. As expected, the Cu crystallite sizes for the nano-Cu material were the largest among the other Cu containing catalysts due to the lack of Cu dispersion. The bulk Mo₂C and Cu/Mo₂C materials exhibited peaks for β -Mo₂C and α -MoC_{1-x}²⁹ with similar proportions of each phase based on the relative peak areas. Because the overall Mo to C ratio approaches 2, these materials will be referred to as "Mo₂C" in this paper. No peaks were observed for molybdenum oxides (MoO₂ or MoO₃) in patterns for the carbides, indicating complete carburization during the synthesis. For the Cu/Mo₂C material, there was a broad peak at 41° 2θ corresponding to the Cu (111) reflection. This result is consistent with a high degree of dispersion for the Cu crystallites on the Mo₂C surface. Table 1 lists crystallite sizes for all of the catalysts.

Reaction Rates and Selectivities. CO₂ Hydrogenation. With the exception of the nano-Cu catalyst, all of the materials were active for the conversion of CO2. The rates and selectivities after 2 h of reaction are listed in Table 2. The Cu–Zn–Al and Cu/Mo₂C catalysts possessed the highest rates, CH₃OH selectivities, and CH₃OH production TOFs. Given the system detection limits (5 ppm), products from the nano-Cu catalyst would have easily been detected if rates per surface area for this material were of the same order as those for the other catalysts. The lack of activity could be a consequence of support effects.9b,31 There is significant literature suggesting the need for an oxide to function synergistically with Cu.^{8a,c,32} The importance of the support is also reflected in the different TOFs for the Cu-Zn-Al, Cu-Cr, and Cu/Mo₂C catalysts. The Mo₂C catalyst was slightly more active than the Cu-Cr catalyst but was much less active and selective than the Cu-Zn-Al and Cu/Mo₂C catalysts, producing significant amounts of CO and some CH₄. In comparing the Mo₂C and Cu/Mo₂C catalysts, we observed that the addition of Cu to Mo₂C resulted in a significant increase in activity and a reduction in the CO and CH₄ selectivities.

To investigate the potential of formic acid and formate ester intermediates, a series of experiments were carried out in which ethanol (to facilitate esterification of formic acid to ethyl formate), formic acid, or ethyl formate was added to the $CO_2/$ H₂ reactant. Ethyl formate was used instead of methyl formate to allow easy distinction of CH₃OH produced during CO₂ hydrogenation from that produced during formate hydrogenation. The introduction of 50 mmol of ethanol (2 mL) to the CO₂ and H₂ reactants resulted in the formation of ethyl formate and CH₃OH for all of the catalysts as shown in Table 3. The overall CO_2 conversion rates were significantly enhanced after the addition of ethanol. The increase in the CO₂ conversion rate was greatest for the Cu–Cr catalyst, which exhibited a very high selectivity and formation rate relative to ethyl formate. This finding suggested that formate hydrogenation to CH₃OH was rate limiting for this catalyst. For the other catalysts, the introduction of ethanol caused a significant increase in the CH₃OH formation rate. The increased CH₃OH formation rates on the addition of ethanol are consistent with formic acid formation being the rate-limiting step. Indeed, as shown in Figure 3, the addition of formic acid (3 mmol) caused a significant increase in the CH₃OH production rate for the Cu/Mo₂C catalyst. Finally, we note that the addition of ethyl formate (2.5 mmol) also caused an increase in the CH₃OH production rate, although the increase was not as substantial as

Table 2. CO₂ Hydrogenation over the Cu- and Mo₂C-Based Catalysts^a

	CO ₂ conv rate		selectivity (%)				
catalyst	$\mu mol/g_{cat}/h$	μ mol/m ² /h	CH ₃ OH	CH_4	СО	CH ₃ OH production rate (μ mol/m ² /h)	CH ₃ OH production TOF $(s^{-1} \times 10^4)$
nano-Cu	0	0	0	0	0	0	0
Cu-Zn-Al	168	2.8	100	0	0	2.8	2.4
Cu-Cr	29	0.6	88	0	12	0.54	0.38
Mo ₂ C	83	0.5	79	5.3	16	0.43	0.44
Cu/Mo ₂ C	225	1.7	93	2.6	4.1	1.6	2.0

^a135 °C, 10 bar of CO₂, 30 bar of H₂, 37.5 mL of 1,4-dioxane, rates calculated at 2 h.

		CO ₂ conv rate selectivity (%)				HCO ₂ Et ^b J	production	CH ₃ OH production		
cataly	vst	μ mol/g _{cat} /h	μ mol/m ² /h	HCO ₂ Et ^b	CH ₃ OH	$CH_4 + CO$	rate ($\mu mol/m^2/h$)	TOF $(s^{-1} \times 10^4)$	rate ($\mu mol/m^2/h$)	TOF $(s^{-1} \times 10^4)$
Cu-Zn	-Al	325	5.4	36	61	3.5	1.9	1.7	3.3	2.9
Cu-Cr		269	5.8	97	3.0	0	5.7	3.9	0.18	0.12
Cu/Mo	$_{2}C$	458	3.4	29	66	4.8	1.0	1.2	2.2	2.8
^a 135 °C, 10 bar of CO ₂ , 30 bar of H ₂ , 2 mL of ethanol, 35.5 mL of 1,4-dioxane, rates calculated at 2 h. ^b HCO ₂ Et = ethyl formate.										

Table 3. CO₂ Hydrogenation in the Presence of Ethanol over the Cu- and Mo₂C-Based Catalysts^a

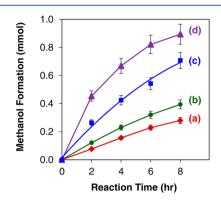


Figure 3. Methanol formation during CO_2 hydrogenation over the Cu/Mo₂C catalyst with (a) CO_2 and H_2 , (b) CO_2 and H_2 with 50 mmol of ethanol added, (c) CO_2 and H_2 with 2.5 mmol of ethyl formate added, and (d) CO_2 and H_2 with 3 mmol of formic acid added. The experiments were carried out at 135 °C with 10 bar of CO_2 , 30 bar of H_2 , and 35.5–37.5 mL of 1,4-dioxane.

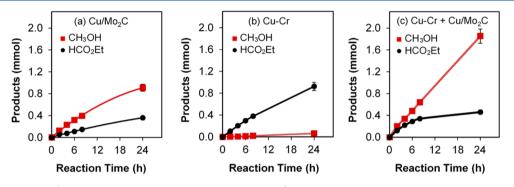
when formic acid was added to the CO_2/H_2 reactant; ethanol was also observed, confirming ethyl formate hydrogenation.

Formic Acid Hydrogenation. All of the catalysts were active for the conversion of formic acid, although CO₂ was the principal product. Rates and selectivities after 2 h of reaction are listed in Table 4. The highest surface area specific rate was observed for the nano-Cu catalyst, but the formic acid was almost exclusively converted to CO₂. The conversion of formic acid to CO₂ ($\Delta G_{135 \, ^{\circ}C} = -72 \, \text{kJ/mol}$) is thermodynamically more favorable than the production of CH₃OH ($\Delta G_{135 \ ^{\circ}C}$ = -46.3 kJ/mol) under the reaction conditions that were employed.³³ Activities for the Cu/Mo₂C and Cu-Zn-Al catalysts were similar; the CH₃OH selectivity for the Cu/Mo₂C catalyst was slightly higher than that for the Cu-Zn-Al catalyst. As anticipated, the Mo₂C catalyst was less active and less selective toward CH₃OH production compared to the Cu/ Mo₂C catalyst. Both of these catalysts produced methyl formate, CH₄, and CO. The enhanced CH₃OH selectivity for the Cu/Mo₂C catalyst compared to the Mo₂C and nano-Cu catalysts suggested a synergy between the Mo₂C and Cu. The Cu-Cr catalyst was the least active and selective for CH₃OH production from formic acid.

Ethyl Formate Hydrogenation. With the exception of the nano-Cu catalyst, all of the other catalysts were similarly active. The reaction rates and selectivities after 2 h of reaction are shown in Table 5. Again we used ethyl formate instead of methyl formate to allow easy distinction of the products. It is interesting to note that the Cu–Cr catalyst was nearly as active as the other supported Cu catalysts. Recall that the Cu–Cr catalyst was highly active for ethyl formate formation from CO₂ in the presence of ethanol but was relatively inactive for CH₃OH formation from CO₂ (with and without ethanol) or formic acid hydrogenation. These results suggested that CO₂ inhibited the conversion of ethyl formate to CH₃OH over the Cu–Cr catalyst. This finding will be considered in the selection of catalysts for the cascade system.

Stoichiometrically, the hydrogenation of ethyl formate should produce equal amounts of methanol and ethanol. Methanol to ethanol ratios for the catalysts ranged from 0.4 to 0.7, lower than the stoichiometric value of unity. These results indicated that side reactions occurred. A plausible source for the excess ethanol is the hydrolysis of ethyl formate. This reaction would produce ethanol and formic acid, a likely source of the CO_2 produced by most of the catalysts. In fact, the excess ethanol was comparable to the amount of CO_2 produced. In addition to CH_3OH , ethanol, and CO_2 , small amounts of CH_4 were produced over the Mo_2C -containing catalysts. CH_4 formation was also observed for these catalysts during CO_2 and formic acid hydrogenation.

*Cascade CO*₂ *Hydrogenation.* Our primary objective was to design a cascade system for the hydrogenation of CO₂ based on heterogeneous catalysts. To this end, we identified catalysts that would facilitate CO₂ hydrogenation to CH₃OH through a formate intermediate. In the presence of ethanol, the Cu–Cr catalyst was highly active and selective for CO₂ hydrogenation to ethyl formate. This catalyst was not, however, active for ethyl formate hydrogenation in the presence of ethanol. Several of the catalysts were active for the hydrogenation of ethyl formate in the presence of ethanol; however, we selected the Cu/Mo₂C catalyst due to its high rate and selectivity to CH₃OH. Equal masses of the Cu–Cr and Cu/Mo₂C catalysts were used for the cascade system given their similar rates for the hydrogenation


Table 4. Formic Acid Hydrogenation over the Cu and Mo₂C-Based Catalysts^a

	formic acid conv rate		selectivity (%)						
catalyst	mmol/g _{cat} /h	μ mol/m ² /h	СН ₃ ОН	HCO ₂ Me ^b	CH ₄	СО	CO ₂	CH_3OH production rate $(\mu mol/m^2/h)$	$\begin{array}{c} CH_{3}OH \text{ production TOF} \\ (s^{-1} \times 10^{4}) \end{array}$
nano-Cu	1.7	300	4.6	0.0	0.0	0.0	95	14	
Cu–Zn–Al	2.1	36	27	0.0	0.0	0.0	73	9.7	8.4
Cu-Cr	3.8	84	1.8	0.0	0.0	0.3	98	1.5	1.0
Mo ₂ C	3.4	22	15	5.2	0.8	2.7	77	3.3	3.4
Cu/Mo ₂ C	3.7	28	30	8.2	0.5	1.9	59	8.3	11

^a135 °C, 30 bar of H₂, 3 mmol of formic acid, 37.5 mL of 1,4-dioxane, rates calculated at 2 h. ^bHCO₂Me = methyl formate.

	ethyl format	te conv rate		selectivity	(%)			
catalyst	μ mol/g _{cat} /h	μ mol/m ² /h	СН ₃ ОН	C ₂ H ₅ OH	CH_4	CO ₂	CH_3OH production rate $(\mu mol/m^2/h)$	$\begin{array}{c} CH_{3}OH \ production \ TOF \\ (s^{-1} \times 10^{4}) \end{array}$
nano-Cu	79	14	37	54	0	9.2	10	
Cu-Zn-Al	598	10	25	55	0	20	4.4	3.8
Cu-Cr	554	12	27	52	0	21	6.0	4.1
Mo ₂ C	889	5.9	21	53	1.9	24	2.3	2.3
Cu/Mo ₂ C	837	6.2	33	51	0.6	16	3.7	4.6

^a135 °C, 30 bar of H₂, 0.6 mmol of ethyl formate, 37.5 mL of 1,4-dioxane, rates calculated at 2 h.

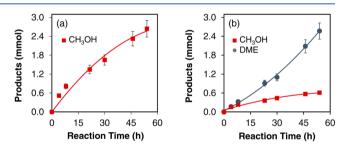


Figure 4. Products formation (red squares, methanol; black circles, ethyl formate) during CO_2 hydrogenation in the presence of ethanol (2 mL) over the (a) Cu–Cr, (b) Cu/Mo₂C, and (c) a mixture of the Cu–Cr and Cu/Mo₂C catalysts. The experiments were carried out at 135 °C with 10 bar of CO_2 , 30 bar of H_2 , and 35.5 mL of 1,4-dioxane.

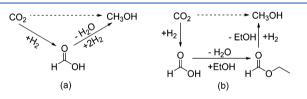
of CO_2 to ethyl formate and ethyl formate to CH_3OH , respectively.

The CH₃OH and ethyl formate produced as a function of time for the individual Cu-Cr and Cu/Mo₂C catalysts and the mixture of the two in the presence of ethanol are illustrated in Figure 4. Over the Cu/Mo₂C catalyst (Figure 4a), CH₃OH was the major product (\sim 74% selectivity), accompanied by a smaller amount of ethyl formate ($\sim 20\%$). The improved methanol formation rate (after the introduction of ethanol) indicated that ethyl formate was an intermediate. In contrast, for the Cu-Cr catalyst (Figure 4b), ethyl formate was the principal product (~97% selectivity), and its subsequent hydrogenation to methanol was inhibited. For a mixture of the Cu/Mo₂C and Cu-Cr catalysts (Figure 4c), CH₃OH production was enhanced by \sim 60%, whereas the formation of ethyl formate decreased by a similar amount, compared to the combined amounts for the individual catalysts. These results suggested that the Cu/Mo₂C and Cu-Cr catalysts worked cooperatively to hydrogenate CO2 to CH3OH via the ethyl formate intermediate. The cascade system achieved a CO₂ conversion rate of 416 μ mol/g_{cat}/h and CH₃OH and ethyl formate selectivities of 77 and 20%, respectively, after 24 h of reaction. The corresponding CH₃OH TOF (calculated at 2 h) for the system is $4.7 \times 10^{-4} \text{ s}^{-1}$.

Given the CH₃OH formation rates for some of the catalysts, we also considered a cascade system to convert CO₂ to dimethyl ether via CH₃OH intermediate. The Cu–Zn–Al and Cu/Mo₂C catalysts were most active for the hydrogenation of CO₂ to CH₃OH. Zeolitic catalysts such as HZSM-5 are known to dehydrate CH₃OH to dimethyl ether and at high temperatures to hydrocarbons via the methanol to olefins (MTO) process or methanol to gasoline (MTG).^{3b,5} Figure 5 illustrates the methanol and dimethyl ether formed as a function of time for the individual Cu/Mo₂C and HZSM-5 catalysts as well as the mixture. The results suggested that the

Figure 5. Methanol and dimethyl ether (DME) production from CO_2 hydrogenation over (a) Cu/Mo₂C catalyst (600 mg) and (b) a mixture of Cu/Mo₂C and HZSM-5 catalysts (600 mg each). The experiments were carried out at 135 °C with 10 bar of CO_2 , 30 bar of H₂, 37.5 mL of 1,4-dioxane, for 54 h. The HZSM-5 catalyst alone was not active under these conditions.

 Cu/Mo_2C and HZSM-5 catalysts worked in concert to produce dimethyl ether from CO_2 via methanol intermediate.


DISCUSSION

Results for the Cu–Zn–Al and Cu–Cr catalysts are somewhat different from those reported by Fan et al.¹¹ They did not observe CH₃OH production at temperatures below ~150 °C; the only products were ethyl formate and CO. The methanol selectivity was maximum (~60%) at 200 °C. We observed relatively high selectivities (>75%) for all of the catalysts at 135 °C (Table 2). There are several plausible explanations for differences between our results and those reported by Fan et al.¹¹ Their experiments were carried out with ethanol as the solvent; we used 1,4-dioxane. Although H₂ solubilities for these solvents are similar (0.16 and 0.14 mol/L for ethanol³⁴ and 1,4-dioxane,^{30a} respectively), the CO₂ solubilities are very different (0.14 and 1.5 mol/L, respectively^{30b,35}). In addition, their use of ethanol would facilitate the esterification reaction and could accelerate methanol production. Finally, it is possible that the

catalysts were in different states of reduction. Our protocol included a step to pretreat the catalysts prior to measurement of their rates and selectivities. The protocol described by Fan et al.¹¹ did not include a pretreatment step. It has been reported that Cu⁰ is the active species for methanol synthesis;^{8b,9b} therefore, one would expect lower activities for the untreated oxide catalysts.

Turnover frequency is a measure of the intrinsic activity of a catalyst. There are no reported TOFs that can be compared directly with our results; however, at 220-240 °C and 10-80 bar, TOFs for CH₃OH production have been reported in the range of 0.003-0.018 s⁻¹ for Cu-based catalysts.³⁶ Extrapolating these published rates to 135 °C would yield TOFs on the order of 10^{-4} s⁻¹ using the reported activation energy of ~60 kJ/mol.8a The estimated TOF for the Cu-Cr:Cu/Mo2C cascade system was 4.7×10^{-4} s⁻¹. Huff and Sanford reported a CH₃OH production turnover number of 2.5 at 135 °C after 16 h for a homogeneous cascade system incorporating $(PMe_3)_4Ru$ -(Cl)(OAc), $Sc(OTf)_3$, and (PNN)Ru(CO)(H)complexes. The corresponding TOF would be 4.3×10^{-5} s^{-1} .¹⁰ Interestingly, they reported a methanol turnover number that would be equivalent to a TOF of $3.6 \times 10^{-4} \text{ s}^{-1}$ for a cascade system where CO₂ hydrogenation to formic acid and formic acid esterification were carried out at 75 °C and then the formate was hydrogenated at 135 °C in a separate reactor (without the first two catalysts). This TOF is similar in magnitude to that achieved for the heterogeneous catalysts described in this paper.

By comparing the CH_3OH production rates from the hydrogenation of CO_2 and suspected intermediates (formic acid and ethyl formate), we were able to further investigate the reaction pathways reported by Fan et al.¹¹ and propose ratelimiting steps. Figure 6 illustrates reaction pathways that are

Figure 6. Summary of reaction pathways for CO_2 hydrogenation over the Cu- and Mo₂C-based catalysts (a) in the absence of ethanol and (b) in the presence of ethanol.

most consistent with our results. In the absence of ethanol, formic acid is likely the principal intermediate. In the presence of ethanol, the pathway from CO2 to CH3OH seemed to include formic acid and formate intermediates. Our results are consistent with the hydrogenation of CO₂ to formic acid being the rate-limiting step for most of the Cu- and Mo₂C-based catalysts. We also observed a small amount of CO production, perhaps via the reverse water-gas shift over most of the catalysts (Tables 2 and 3). To investigate the possibility that CO was an intermediate during CO₂ hydrogenation to methanol, we performed CO hydrogenation at the same reaction conditions (135 $^{\circ}$ C, 10 bar of CO, 30 bar of H₂). Over the Cu/Mo₂C catalyst, the CH₃OH TOF from CO hydrogenation was $4.9 \times 10^{-6} \text{ s}^{-1}$, equivalent to ~2.5% of the CH₃OH TOF ($2.0 \times 10^{-4} \text{ s}^{-1}$) during CO₂ hydrogenation. Similarly, over the Cu-Zn-Al catalyst, the CH₃OH produced from CO hydrogenation was only $\sim 0.8\%$ of that from CO₂ hydrogenation. These results suggested that the CO hydrogenation did not contribute significantly to the production of CH_3OH under the CO_2 hydrogenation conditions employed.

Results for the Mo₂C and Cu/Mo₂C catalysts suggested a synergy between Cu and Mo₂C. We expect that the Cu was zerovalent based on prior investigations.²⁷ Vidal et al. reported evidence of synergy between Cu or Au and TiC (support) during gas phase CO₂ hydrogenation to methanol.³⁷ These metals are effective sites for hydrogen dissociation. Synergistic effects between the metal and carbide have also been reported for Pt/Mo_2C catalysts during water–gas $shift^{25b}$ and \dot{Pd}/WC catalysts during the selective hydrogenation of triglycerides.³⁸ It is plausible that Cu particles on the Cu/Mo₂C catalyst enhanced the hydrogen surface coverage, thereby facilitating the hydrogenation of CO_2 . We also note that the synergy has been reported between Cu and oxides, such as ZnO, in the associated catalysts.^{8a,c,32} To investigate the long-term stability of Mo₂C-based materials, CO₂ hydrogenation was performed over the Cu/Mo₂C catalyst for 72 h. The CH₃OH TOF initially decreased from $2.0 \times 10^{-4} \text{ s}^{-1}$ (at 4 h) to $0.6 \times 10^{-4} \text{ s}^{-1}$ (at 22 h) and then remained relatively constant. The spent catalyst was characterized using XRD and showed the same phases as the fresh catalyst.

To the best of our knowledge, the cascade system described in this paper (Figure 7) is the first of its kind for CO_2

Figure 7. Schematic of proposed reaction pathway for the Cu–Cr and Cu/Mo₂C catalytic cascade system.

hydrogenation. Clearly better-performing catalysts would lead to superior overall performance. Of particular interest would be catalysts for the hydrogenation of CO_2 to formic acid or formate. Xu et al. recently reported that a silica-supported Ir catalyst (Ir-PN/SBA-15) was highly active for the conversion of CO_2 to formic acid at 120 °C with 20 bar of CO_2 and 20 bar of H_2 in an aqueous solution containing small amounts of triethylamine.³⁹ One could also consider combining homogeneous catalysts with heterogeneous catalysts. The homogeneous catalysts described by Huff and Sanford¹⁰ would be good candidates, although compatibility of the homogeneous and heterogeneous catalysts would have to be assessed.

CONCLUSIONS

In this paper we describe a novel heterogeneous cascade system for the hydrogenation of CO₂ to methanol through a formate intermediate. This system consisted of Cu–Cr and Cu/Mo₂C catalysts and yielded a turnover frequency of $4.7 \times 10^{-4} \text{ s}^{-1}$ for CH₃OH production at 135 °C. The results encourage the development of other cascade systems of this type. We also observed that a Cu/Mo₂C catalyst was active for CO₂ hydrogenation to methanol. The deposition of Cu onto the Mo₂C surface enhanced the methanol formation rates. These Mo₂C-based materials were also active for formic acid and formate ester hydrogenation. The introduction of ethanol during CO₂ hydrogenation resulted in improved methanol production rates over the Cu/Mo₂C and Cu–Zn–Al catalysts. We attribute this to the accelerated formation of ethyl formate and its subsequent hydrogenation to methanol. In contrast, the Cu–Cr catalyst was selective for the production of ethyl formate; its subsequent conversion to methanol was inhibited by CO₂. The production of dimethyl ether from CO₂ was also demonstrated over a Cu/Mo₂C:HZSM-5 cascade system, where CO₂ was hydrogenated to methanol over Cu/Mo₂C and methanol was further converted to dimethyl ether by HZSM-5.

AUTHOR INFORMATION

Corresponding Author

*E-mail: ltt@umich.edu (L.T.T.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge funding from the National Science Foundation, under the CCI Center for Enabling New Technologies through Catalysis (CENTC) Phase II Renewal (CHE-1205189). We thank Dr. Jason Gaudet, Dr. Tanya Breault, and Brian Wyvratt for assistance with the experiments and data analysis. We also thank Dr. Chelsea Huff, Dr. Tim Brewster, Prof. Alex Miller, Prof. Karen Goldberg, and Prof. Melanie Sanford for helpful discussions.

REFERENCES

(1) International Energy Outlook 2014; U.S. Energy Information Administration, U.S. Department of Energy, Office of Integrated and International Energy Analysis: Washington, DC, USA, 2014.

(2) Metz, B.; Davidson, O. R.; Bosch, P. R.; Dave, R.; Meyer, L. A. *Climate Change 2007: Mitigation*; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge, UK, 2007.

(3) (a) Quadrelli, E. A.; Centi, G.; Duplan, J.; Perathoner, S. *ChemSusChem* 2011, 4, 1194–1215. (b) Centi, G.; Iaquaniello, G.; Perathoner, S. *ChemSusChem* 2011, 4, 1265–1273. (c) Centi, G.; Quadrelli, E. A.; Perathoner, S. *Energy Environ. Sci.* 2013, 6, 1711–1731.

(4) Howarth, R. W.; Bringezu, S. Biofuels: Environmental Consequences and Interactions with Changing Land Use; Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, Gummersbach, Germany, Sept 2008.

(5) Keil, F. J. Microporous Mesoporous Mater. 1999, 29, 49-66.

(6) Fukuda, H.; Kondo, A.; Noda, H. J. Biosci. Bioeng. 2001, 92, 405–416.

(7) (a) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. *J. Org. Chem.* **2008**, 74, 487–498. (b) Olah, G. A.; Prakash, G. K. S.; Goeppert, A. *J. Am. Chem. Soc.* **2011**, 133, 12881–12898.

(8) (a) Choi, Y.; Futagami, K.; Fujitani, T.; Nakamura, J. Appl. Catal., A 2001, 208, 163–167. (b) Natesakhawat, S.; Lekse, J. W.; Baltrus, J. P.; Ohodnicki, P. R.; Howard, B. H.; Deng, X.; Matranga, C. ACS Catal. 2012, 2, 1667–1676. (c) Kurtz, M.; Bauer, N.; Büscher, C.; Wilmer, H.; Hinrichsen, O.; Becker, R.; Rabe, S.; Merz, K.; Driess, M.; Fischer, R. A. Catal. Lett. 2004, 92, 49–52. (d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703–3727.

(9) (a) Yang, Y.; Evans, J.; Rodriguez, J. A.; White, M. G.; Liu, P. *Phys. Chem. Chem. Phys.* **2010**, *12*, 9909–9917. (b) Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; Tovar, M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R. *Science* **2012**, *336*, 893–897.

(10) Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122–18125.

(11) Fan, L.; Sakaiya, Y.; Fujimoto, K. Appl. Catal., A **1999**, 180, L11–L13.

(12) Yu, K. K. M.; Tsang, S. C. Catal. Lett. 2011, 141, 259-265.

(13) (a) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637–638. (b) Kuwabata, S.; Nishida, K.; Tsuda, R.; Inoue, H.; Yoneyama, H. J. Electrochem. Soc. 1994, 141, 1498–1503. (c) Barton, E. E.; Rampulla, D. M.; Bocarsly, A. B. J. Am. Chem. Soc. 2008, 130, 6342–6344. (d) Hori, Y. Electrochemical CO_2 reduction on metal electrodes. In Modern Aspects of Electrochemistry; Springer: Berlin, Germany, 2008; pp 89–189. (e) Centi, G.; Perathoner, S. Catal. Today 2010, 150, 151–162.

(14) Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Annu. Rev. Phys. Chem. 2012, 63, 541–569.

(15) (a) Canfield, D.; Frese, K., Jr. J. Electrochem. Soc. 1983, 130, 1772–1773. (b) Tomkiewicz, M.; Woodall, J. M. Science 1977, 196, 990–991.

(16) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 124, 7617–7620.

(17) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. **2005**, 105, 1001–1020.

(18) (a) Felpin, F.-X.; Fouquet, E. ChemSusChem 2008, 1, 718–724.
(b) Yamada, Y.; Tsung, C.-K.; Huang, W.; Huo, Z.; Habas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P. Nat. Chem. 2011, 3, 372–376.

(19) Huff, C. A.; Kampf, J. W.; Sanford, M. S. Organometallics 2012, 31, 4643–4645.

(20) Davies, I. W.; Matty, L.; Hughes, D. L.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 10139–10140.

(21) Yang, C.; Ma, Z.; Zhao, N.; Wei, W.; Hu, T.; Sun, Y. Catal. Today **2006**, 115, 222–227.

(22) Dubois, J.-L.; Sayama, K.; Arakawa, H. Chem. Lett. **1992**, 21, 5–8.

(23) Xu, W.; Ramirez, P.; Stacchiola, D.; Rodriguez, J. Catal. Lett. 2014, 144, 1–7.

(24) (a) Vo, D.-V. N.; Adesina, A. A. *Appl. Catal., A* **2011**, 399, 221–232. (b) Xiang, M.; Li, D.; Xiao, H.; Zhang, J.; Qi, H.; Li, W.; Zhong, B.; Sun, Y. *Fuel* **2008**, 87, 599–603. (c) Patterson, P. M.; Das, T. K.; Davis, B. H. *Appl. Catal., A* **2003**, 251, 449–455.

(25) (a) Patt, J.; Moon, D.; Phillips, C.; Thompson, L. *Catal. Lett.* **2000**, 65, 193–195. (b) Schweitzer, N. M.; Schaidle, J. A.; Ezekoye, O. K.; Pan, X.; Linic, S.; Thompson, L. T. *J. Am. Chem. Soc.* **2011**, *133*, 2378–2381.

(26) Ren, H.; Yu, W.; Salciccioli, M.; Chen, Y.; Huang, Y.; Xiong, K.; Vlachos, D. G.; Chen, J. G. *ChemSusChem* **2013**, *6*, 798–801.

(27) Schaidle, J. A.; Schweitzer, N. M.; Ajenifujah, O. T.; Thompson, L. T. J. Catal. 2012, 289, 210–217.

(28) Klug, H. P.; Alexander, L. E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley-VCH: Weinheim, Germany, 1974; Vol. 1, p 992.

(29) Schaidle, J. A.; Lausche, A. C.; Thompson, L. T. J. Catal. 2010, 272, 235-245.

(30) (a) Brunner, E. J. Chem. Eng. Data 1985, 30, 269–273.
(b) Kassim, D.; Zainel, H.; Al-Asaf, S.; Talib, E. Fluid Phase Equilib. 1988, 41, 287–294.

(31) (a) Günter, M. M.; Ressler, T.; Jentoft, R. E.; Bems, B. J. Catal. 2001, 203, 133–149. (b) Kasatkin, I.; Kurr, P.; Kniep, B.; Trunschke, A.; Schlögl, R. Angew. Chem. 2007, 119, 7465–7468.

(32) Fujitani, T.; Nakamura, J. Appl. Catal., A 2000, 191, 111–129.
(33) Thermodynamic calculations are based on standard values from

NIST Chemistry WebBook. (34) Purwanto; Deshpande, R.; Chaudhari, R.; Delmas, H. J. Chem.

Eng. Data **1996**, *41*, 1414–1417. (35) Dalmolin, I.; Skovroinski, E.; Biasi, A.; Corazza, M.; Dariva, C.;

(35) Damoini, I.; Skovronski, E.; Blasi, A.; Corazza, M.; Dariva, C.; Oliveira, J. V. *Fluid Phase Equilib.* **2006**, *245*, 193–200.

(36) (a) Słoczyński, J.; Grabowski, R.; Kozłowska, A.; Olszewski, P.; Stoch, J.; Skrzypek, J.; Lachowska, M. *Appl. Catal., A* **2004**, *278*, 11– 23. (b) Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. *J. Catal.* **2007**, *249*, 185–194. (c) Sun, Q.; Zhang, Y.-L.; Chen, H.-Y.; Deng, J.-F.; Wu, D.; Chen, S.-Y. *J. Catal.* **1997**, *167*, 92– 105. (37) Vidal, A. B.; Feria, L.; Evans, J.; Takahashi, Y.; Liu, P.; Nakamura, K.; Illas, F.; Rodriguez, J. A. J. Phys. Chem. Lett. **2012**, *3*, 2275-2280.

(38) Lausche, A. C.; Okada, K.; Thompson, L. T. Electrochem.

(30) Eadsche, H. C., Okada, R., Fhompson, E. T. Ekchelenm. *Commun.* 2012, 15, 46–49.
(39) Xu, Z.; McNamara, N. D.; Neumann, G. T.; Schneider, W. F.;
Hicks, J. C. *ChemCatChem* 2013, *5*, 1769–1771.